

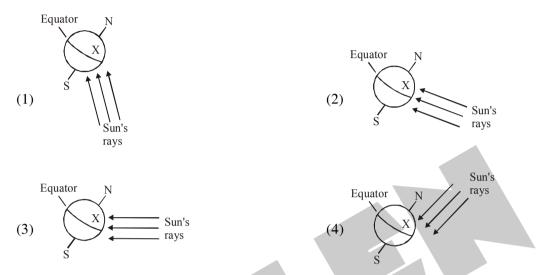
INSTRUCTIONS

Time duration: 2:00 hours.

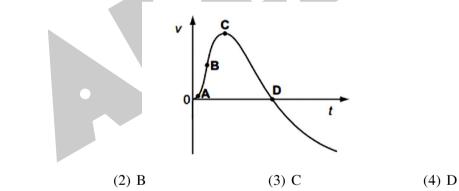
Maximum Marks: 320

This Question Paper contains 80 MCQs with 4 choices (Subjects: Physics: 15, Chemistry: 15, Biology: 15 & Maths: 15, Mental ability: 20).

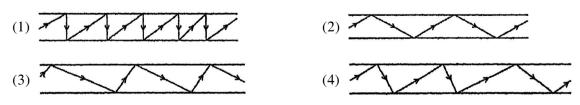
Marking Scheme: For each correct answer **4 marks** are awarded and for each wrong answer **–1 mark** is awarded. In case of no response zero mark will be awarded.



SECTION - A : PHYSICS


Ξ

This section contains **15 Multiple Choice Questions**. Each question has four choices (1), (2), (3) and (4) out of which ONLY ONE is correct.


1. Which of the following diagrams best represents the angle at which the Sun's rays strike location X at noon on June 21?

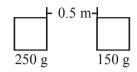
2. The graph shows how the velocity 'v' of a firework rocket changes with time t. At which point on the graph does the rocket have the greatest acceleration?

3. Which diagram correctly represents reflection of light along an optical fibre?

- 4. A bomb at rest explodes into two pieces of equal mass. Then the pieces will fly off
 - (1) in the same direction with equal speeds

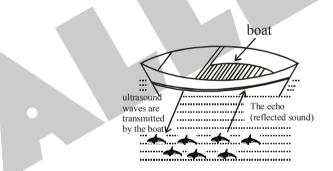
(1) A

(2) in the same direction with unequal speeds


(3) in opposite direction with equal speeds

(4) in opposite directions with unequal speeds

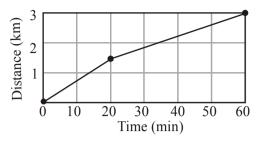
- 5. If the velocity of car is increased by 20% then the minimum distance in which it can be stopped increases by
 - (1) 44% (2) 55% (3) 66% (4) 88%


ALLEN'S Talent Encouragement Exam

- 6. A sound tone is produced in water, when it enters air
 - (1) λ decreases, and f does not change
- (2) both λ and f increase
- (3) both λ and f decrease (4) λ increases and f does not change
- 7. What event will produce the greatest increase in the gravitational force between the two masses ?

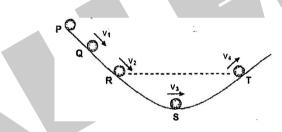
- (1) doubling the large mass
- (2) doubling the distance between the masses
- (3) reducing the small mass by half
- (4) reducing the distance between the masses by half.
- 8. The diameter of Saturn is almost ten times that of the Earth, yet its density is much less. This can best be explained by the fact that Saturn
 - (1) is farther from the Sun

- (2) is a gaseous planet
- (3) has a shorter period of rotation (4) has a ring around its center
- 9. A fish finder sends ultrasonic waves down the water to determine the location of the fish.

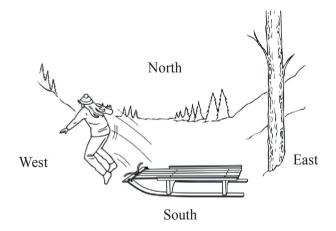


The same principle of reflection of sound is used in

- (1) Sonic boom (2) Sonar
- (3) Echocardiography (4) Ultrasonography
- **10.** If the density of earth increases by 20% and radius decreases by 20% then the new value of "g" on the surface of earth will be :
 - (1) 0.8 g (2) 0.90 g (3) 0.96 g (4) g
- 11. A plane mirror forms a virtual image. The distance between Mahima and her image in a plane mirror is 10 m. How much distance should she move in order to get the distance of 5 m between herself and her image ?
 - (1) 2.5 m away form the mirror (2) 2.5 m towards the mirror
 - (3) 5 m away form the mirror (4) 5 m towards form the mirror



12. The graph below shows distance over time.


Which of these situations could be represented by this graph?

- (1) A student walks 1.5 km to a friend's house in 40 minutes. The two students then walk another 1.5 km to school in 20 minutes.
- (2) A student walks 1.5 km to a friend's house in 20 minutes. The two students then walk another 1.5 km to school in 40 minutes.
- (3) A student walks 1.5 km to a friend's house in 30 minutes. The two students then walk another 1.5 km to school in 30 minutes.
- (4) A student walks 1.5 km to a friend's house in 20 minutes. The two students then walk another 1.5 km to school in 60 minutes.
- **13.** P,Q,R,S and T are five points on a smooth curved rail. Point R is directed along point T as shown in the diagram.

A marble released from rest at point P slides along the rail. The speeds of the marble at points Q, R, S and T are v_1 , v_2 , v_3 and v_4 respectively. Then which of the following relation is correct? (1) $v_4 > v_3 > v_2 > v_1$ (2) $v_1 > v_2 > v_3 > v_4$ (3) $v_4 = v_2 > v_3 > v_1$ (4) $v_3 > v_4 = v_2 > v_1$

14. A student jumps off a sled toward the west after it stops at the bottom of an icy hill.

In what direction will the sled most likely move as the student jumps off?(1) North(2) South(3) East(4) West

CLA	ASS-IX			TALLEN'S Talent Encouragement Exam							
15.	The minute hand of 11:00 am to 11:30 a	-	e average velocity of the	tip of the minute hand between							
	(1) 1.5×10^{-5} m/s	(2) 4.5×10^{-5} m/s	(3) 1.8×10^{-6} m/s	(4) 3.5×10^{-6} m/s							
		SECTION-B	: CHEMISTRY								
This	section contains 15 M	ultiple Choice Questions	. Each question has four	choices (1), (2), (3) and (4) out							
of w	hich ONLY ONE is a	correct.									
16.	Arrange the differen	t types of coal in the inc	creasing order of their qu	uality.							
	(a) Lignite	(b) Peat	(c) Anthracite	(d) Bituminous							
	(1) acdb	(2) dbca	(3) badc	(4) bcda							
17.	German silver is an	alloy of									
	(1) Cu, Ni and Sn	(2) P, Cu and Ag	(3) Cu, Zn and Sn	(4) P, Cu and As							
18.	Element used for ma	aking solar cells, transist	ors and computer chips	is							
	(1) Phosphorus	(2) Silicon	(3) Iron	(4) Sulphur							
19.	Total amount of heat produced by a fuel having calorific value of 30 kJ/kg was found to be 60,000										
	Joules. How much f	uel was burnt?									
	(1) 2000 kg	(2) 200 kg	(3) 20 kg	(4) 2 kg							
20.	Forest fire is an example of										
	(1) slow combustion	1	(2) rapid combustion	(2) rapid combustion							
	(3) spontaneous con	(3) spontaneous combustion (4) explosion									
21.	The liquid and its va	apours at boiling point are	e at equilibrium. The mo	lecules of the two phases have							
	(1) potential energy	(2) forces	(3) total energy	(4) kinetic energy							
22.	-			C, 56°C and 118°C respectively.							
	Which one of the following correctly represents their boiling points in kelvin scale?										
	(1) 306 K, 329 K, 3	991 K	(2) 308 K, 329 K, 39	92 K							
	(3) 308 K, 329 K, 3	(4) 329 K, 392 K, 30	08 K								
23.	The solubility of pota	ssium chloride in water at	20°C is 34.7 g in 100 g o	of water. The density of solution							
	is 1.3 g/ml. Calculate the % of mass/volume concentration of potassium chloride.										
	(1) 25.76%	(2) 33.49%	(3) 24.7%	(4) 1.3%							
24.	Which one of the fo	ollowing processes results	s in the formation of a r	new chemical compound ?							
	(1) Dissolving comm	non salt in water	(2) Heating water								
	(3) Heating platinum rod (4) Heating calcium carbonate										
25.	Water is used to ext	Water is used to extinguish fire because water									
	(1) raise the ignition temperature of the burning substance.										
	(2) lowers the ignition temperature of the burning substance.										
	(3) cools the burning substance to a temperature below its ignition temperature.										
	(4) conducts the heat.										

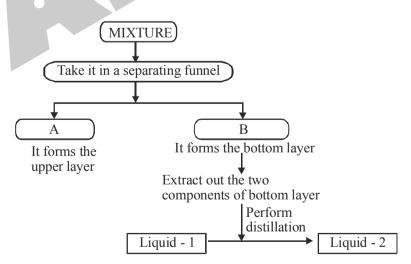
4/16

TALLEN'S Talent Encouragement Exam

26. The table shows the melting and boiling points of four pure substances.

Which substance is a liquid at room temperature and rapidly evaporates if left exposed to air?

		Substance	Melting point/°C	Boiling point/°C]
		Α	-100	-35	
		В	-7	58	
		С	-6	225	-
		D	44	280	
	(1) A	(2) B	(3) C		(4) D
27.	Goldsmith uses	zone of the	flame for melting g	gold.	
	(1) Outermost zone	(2) Middl	e zone (3) In	nermost zone	(4) Both (2) & (3)
28.	Arrange the given co	mbustible su	bstances in decreas	ing order of calori	fic value.
	(a) Hydrogen	(b) Charce	oal (c) Pe	etrol	
	(d) L.P.G	(e) Wood			
	(1) b c a d e	(2) a d c	b e (3) b	a d e c	(4) b a c e d
29.	Which of the followi	ng statement	s is true about the o	evaporation of wat	er from an open container?


(1) Evaporation is slower when there is a breeze.

(2) Evaporation takes place faster on a humid day.

(3) The process of evaporation gives off energy.

(4) Some water particles leave the surface and become part of the air.

30. Identify A and B in the given flow-chart.

(1) (A)-Kerosene and Water, (B)-Common salt

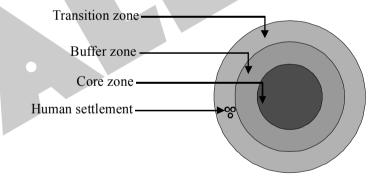
(2) (A)-Oil and Water, (B)-Common salt

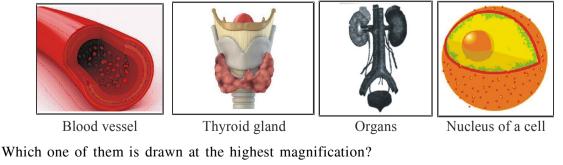
(3) (A)-Oil, (B)-Alcohol and Water

(4) (A)-Water, (B)-Common salt and Oil

SECTION-C : BIOLOGY

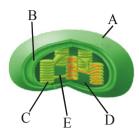
This section contains **15 Multiple Choice Questions.** Each question has four choices (1), (2), (3) and (4) out of which ONLY ONE is correct.


31. Who is/are "Father of Green Revolution" ?



Dr. V. Kurein

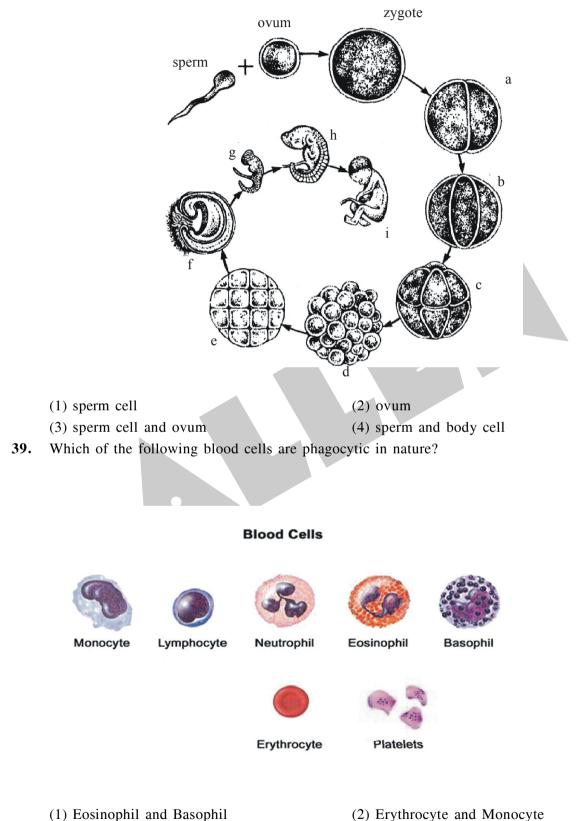
- (3) Norman borlaug and Dr. V. Kurein both are the Father of Green Revolution.
- (4) None of these
- 32. Select the zone from the below image where no human activity is allowed.


(1) Transition zone (2) Core zone (3) Buffer area (4) None of the above33. Shown here are some drawings of structures that are found in our bodies. They are all at different magnifications.

(4) Nucleus of a cell

34. Identify A to E in the sectional view of a chloroplast given below.

- (1) A-Inner membrane, B-Granum, C-Outer membrane, D-Stromal lamellae E-Stroma
- (2) A-Outer membrane, B-Inner membrane, C-Thylakoid D-Stroma, E-Stromal lamellae
- (3) A-Thylakoid, B-Outer membrane, C-Stroma, D-Stromal lamellae, E-Granum
- (4) A-Outer membrane, B-Stroma, C-Inner membrane, D-Granum, E-Thylakoid
- 35. Which of the following option is correct regarding the diagram given below?



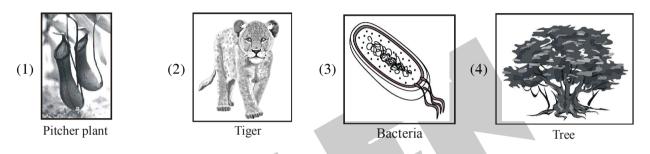
Sprinkler system of irrigation

- (1) It is useful for sandy soil and even land.
- (2) It is useful for loamy soil and even land.
- (3) It is useful for loamy soil and uneven land.
- (4) It is useful for sandy soil and uneven land
- **36.** Find out the correct sentences about manure.
 - (i) Manure reduces soil erosion.
 - (ii) Manure improves the texture of soil by adding organic matter.
 - (iii) Manure decreases water holding capacity.
 - (iv) Manure decreases the number of friendly microbes.
 - (1) (i) and (iii) (2) (i) and (ii)
 - (3) (ii) and (iii) (4) (iii) and (iv)
- **37.** The Black Rhino is killed for its
 - (1) Ivory (2) Fur

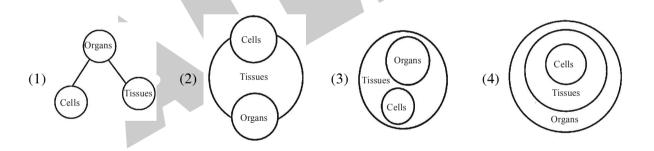
(3) Horn

(4) Meat

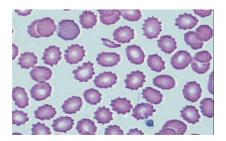
38. The new baby's genetic / inherited material is carried in the


(3) Lymphocyte and Platelet

- (2) Erythrocyte and Monocyte
- (4) Neutrophil and Monocyte


40. Which of the following practices involve in organic farming ?

TALLENTEX


- (1) Use of biofertilizers (2) Crop rotation
- (3) Both (1) and (2) (4) Use of chemical pesticides
- 41. Use of contraceptive pills by female inhibits which step of reproductive cycle
 - (1) Ovulation (2) Ejaculation
 - (3) Insemination (4) Fertilization
- **42.** There are some microorganisms which decompose the waste products and remain of dead plant and animals. This helps in keeping the environment clean. Which of the following can do this ?

43. Which diagram best illustrates the relationship among the number of cells, tissues, and organs in a complex multicellular organism?

44. Study the diagram given below. In this diagram RBC's show crenation then this solution will be

(1) Hypotonic
 (3) Hypertonic

(2) Isotonic(4) None of these

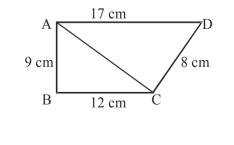
45. Living organisms are madeup of building blocks called cells. They may differ in size, in the way they look and in what they are used for. Look at the pictures of different cells.

			IV	V				
	Which diagrams repre	*						
	(1) III and IV	(2) II and V	(3) I and III	(4) I and IV				
	antion contains 15 Ma		MATHEMATICS	n abaiaaa (1) (2) (2) and (4)				
	of which ONLY ONE		S. Each question has fou	r choices (1), (2), (3) and (4)				
<u>46.</u>		product of first 50 odd	natural numbers is					
	(1) 0	(2) 5	(3) 7	(4) None of these				
47.	Find the quotient if w	e divide $x^7 y - xy^7$ by (3)	$(x+y)(x^2-xy+y^2)$					
	(1) $xy(x^3 + y^3)$	(2) $(x^3 + y^3)$	$(3) xy(x^3-y^3)$	(4) $(x^3 - y^3)$				
48.	If 3^{x+3} . $9^{2x-5} = 3^{3x+7}$, the	nen the value of x is						
	(1) 3	(2) 4	(3) 6	(4) 7				
49.	Factorize : $p^2 + q^2 - a$	$b^2 - b^2 + 2pq + 2ab + p$	+ q – a + b					
	(1) $(p + q - a + b)(p - a + b)($	+ q + a – b + 1)	(2) $(p - q - a + b)(p - a + b)($	-q + a - b + 1)				
	(3) $(p + q + a + b)(p - a + b)($	+ q + a – b + 1)	(4) $(p + q - a - b)(p + q + a - b + 1)$					
50.	If $r^3 = 1728$ and $s = ($	$(6859)^{1/3}$, then s ² – r ² is						
	(1) 217	(2) 341	(3) 534	(4) 231				
51.	The number $107^{90} - 7$	6 ⁹⁰ is divisible by						
	(1) 61	(2) 62	(3) 64	(4) None of these				
52.	What is the value of y	$x^3 - 3b^{\frac{2}{3}}x + 9a$, if $x = (2a)^{\frac{2}{3}}x + 9a$	$+\sqrt{4a^2-b^2}\Big)^{1/3}+\Big(2a-\sqrt{2a-b^2}\Big)^{1/3}$	$\overline{4a^2-b^2}\Big)^{1/3}$?				
	(1) 12a	(2) 13a	(3) 14a	(4) None of these				
10/16)							

```
53. Find x : [3+\{2+(1+x^2)^2\}^2]^2 = 144
```

ENTEX

- (1) 1 (2) 0 (3) 5 (4) 6
- 54. If a wire is bent into the shape of a square, then the area of the square is 81 sq. cm. When the


wire is bent into a semi-circular shape, the area of the semi-circle will be: (take $\pi = \frac{22}{7}$)

- (1) 22 cm^2 (2) 44 cm^2 (3) 77 cm^2 (4) 154 cm^2
- **55.** In $\triangle ABC$, if $\angle ABD = 64^\circ$, what is the measure of $\angle DEC \angle ACE$?
 - (1) 66°
 - (2) 64°
 - (3) 60°

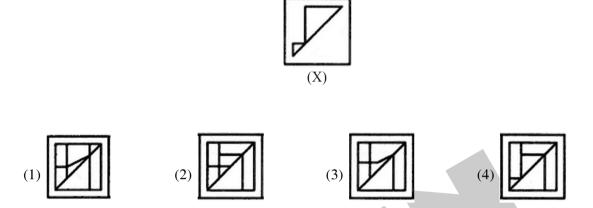
(1) 54

- (4) 54° B
- 57. If two lines intersect X axis at (-1, 0) and (10, 0) and Y axis at (0, 1) and (0, 10) and intersect each other at (4, 5) then find the difference between area of triangle formed by the lines along with X axis and area of triangle formed by lines along with Y axis.
 - (1) $\frac{19}{2}$ sq units (2) 7 sq units (3) 14 sq units (4) None of these
- 58. Three pumps working 8 hours a day can empty a tank in 2 days. How many hours a day must 4 pumps work to empty the tank in 1 day ?
 - (1) 13 hours (2) 12 hours (3) 10 hours (4) 9 hours
- **59.** If the area of the quadrilateral ABCD ($\angle B = 90^\circ$) is (a + $20\sqrt{b}$) cm² (where a is area of $\triangle ABC$), then the value of a + b is

(3) 85

(2) 63

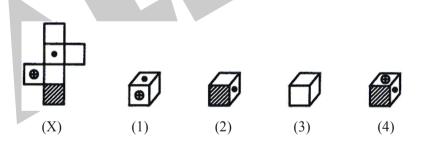
(4) none of these



	Factorize $(x + y + z)$										
	(1) $2(x + y + z) (x + z)$	+ y – z)	(2) $(x + y + z) (x + y - z)$								
	(3) $4z(x + y)$		(4) $(x + y + z)$	(x - y - z)							
	SECTION-E : MENTAL ABILITY										
This	section contains 20 N	Aultiple Choice Que	estions. Each question	has four choices (1), (2), (3) and (4)							
out o	of which ONLY ONE	is correct.									
61.	Kunal travels 10 m from his shop and turns to his left. After that he turns to right from the crossing										
	After moving certain	yards, he turns to le	ft and again turns to lef	t after moving some distance. Finally,							
	he turns to right. If a	at final position he i	s facing North direction	n, then which direction he was facing							
	while coming out of	f his shop ?									
	(1) South	(2) West	(3) East	(4) North							
52.	Two ladies and two	men are playing a b	ridge game (cards) and	are seated around a square table. No							
	lady is facing towards East. Persons sitting opposite to each other are not of the same sex. One mar										
	is facing towards Sc	outh. Which directio	ns are the ladies facing	ç ?							
	(1) East and West		(2) South and	East							
	(3) North and East		(4) North and	West							
63.	In a certain code language, QUEUE is written as Q22, and CHURCH is written as 1UR1. Which o										
	the following would	l be most appropriat	e code for BANANA i	n that language ?							
	the following would			in that funguage .							
	(1) B5A5	(2) 5N5A	(3) B55A	(4) BA5A5A							
64.	(1) B5A5	(2) 5N5A	(3) B55A	(4) BA5A5A							
64.	(1) B5A5 Kritik ranked 16 th fro	(2) 5N5A m the top and 29^{th} fi	(3) B55A rom the bottom among	(4) BA5A5A those who has passed an examination.							
64.	(1) B5A5 Kritik ranked 16 th fro	(2) 5N5A m the top and 29 th fi participate in the exa	(3) B55A rom the bottom among	(4) BA5A5A those who has passed an examination.							
54.	 (1) B5A5 Kritik ranked 16th fro Six children do not p in the class ? (1) 40 	 (2) 5N5A m the top and 29th finance participate in the example. (2) 44 	(3) B55Arom the bottom among the mination and five faile(3) 50	(4) BA5A5A(4) bas passed an examination.d in it. How many children are there(4) 55							
64. 65.	 (1) B5A5 Kritik ranked 16th fro Six children do not p in the class ? (1) 40 	 (2) 5N5A m the top and 29th finance participate in the example. (2) 44 	(3) B55Arom the bottom among the mination and five faile(3) 50	(4) BA5A5A(4) bas passed an examination.d in it. How many children are there(4) 55							
	 (1) B5A5 Kritik ranked 16th fro Six children do not p in the class ? (1) 40 Two equi dimensional 	 (2) 5N5A m the top and 29th fraction for the example. (2) 44 (2) 44 al cubes are joined family for the example. 	 (3) B55A rom the bottom among tamination and five faile (3) 50 ace to face and are color 	(4) BA5A5Athose who has passed an examination.d in it. How many children are there							
	 (1) B5A5 Kritik ranked 16th fro Six children do not p in the class ? (1) 40 Two equi dimensional faces. One cube is the 	 (2) 5N5A m the top and 29th from participate in the exact (2) 44 al cubes are joined fathen cut into eight exact (2) 44 	 (3) B55A rom the bottom among tamination and five faile (3) 50 ace to face and are color 	 (4) BA5A5A (4) BA5A5A (4) in it. How many children are there (4) 55 (4) or all of their available open the other cube is cut into 27 smaller 							
	 (1) B5A5 Kritik ranked 16th fro Six children do not p in the class ? (1) 40 Two equi dimensional faces. One cube is the 	 (2) 5N5A m the top and 29th from participate in the example (2) 44 (2) 44 (2) 44 (2) 44 (2) 44 (2) 44 (3) 12 	 (3) B55A rom the bottom among the main and five faile (3) 50 ace to face and are coloring and smaller cubes and and wo of their faces coloring (3) 16 	 (4) BA5A5A (4) BA5A5A (4) in it. How many children are there (4) 55 (4) or all of their available open the other cube is cut into 27 smaller 							

(1) 19 (2) 20 (3) 18 (4) 16

- **67.** In a certain code KETTLE is coded as 252235, ROUGH is coded as 96378. What is the code of TALENT ?
 - (1) 213562(2) 251362(3) 213552(4) 251335
- **68.** Find the alternative figure which contains figure (X) as its part.



69. A series of small letters is given which follow a certain pattern. However some letters are missing from the series. You have to find out the right set of letters from alternative that can be inserted into the blanks of the series.

_a_b_abaa_bab_abba

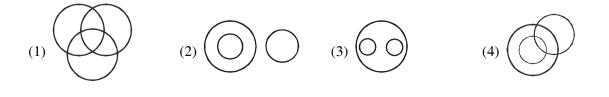
(1) aaabb (2) ababb (3) babab (4) babba

70. Choose the box that is similar to the box formed from the given sheet of paper (X):

 (1) 1 only
 (2) 1 and 3 only
 (3) 1, 3 and 4 only
 (4) 1, 2, 3 and 4

 71. If a means +, b means - , c means × and d means ÷ , then

- 16 c 12 b 6 d 2 a 17 = ?
 - (1) 172

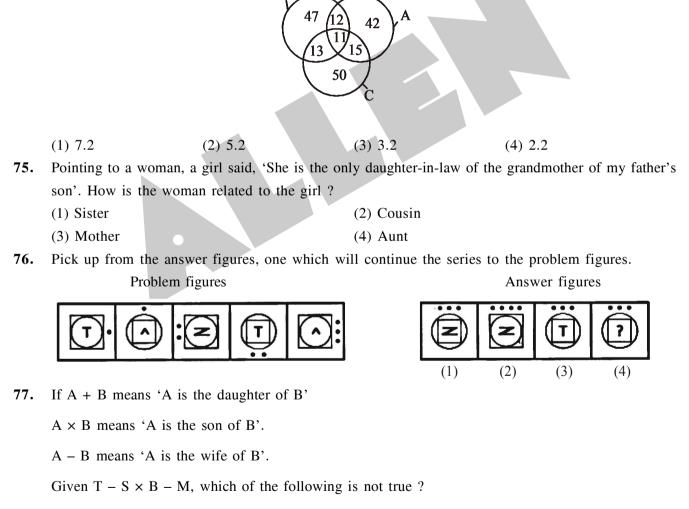

(3) 206

(4) None of these

72. Out of the four figures that follow, you are to indicate which figure will best represent the relationship amongst the three classes.

"Boys, Students, Athletes"

(2) 192

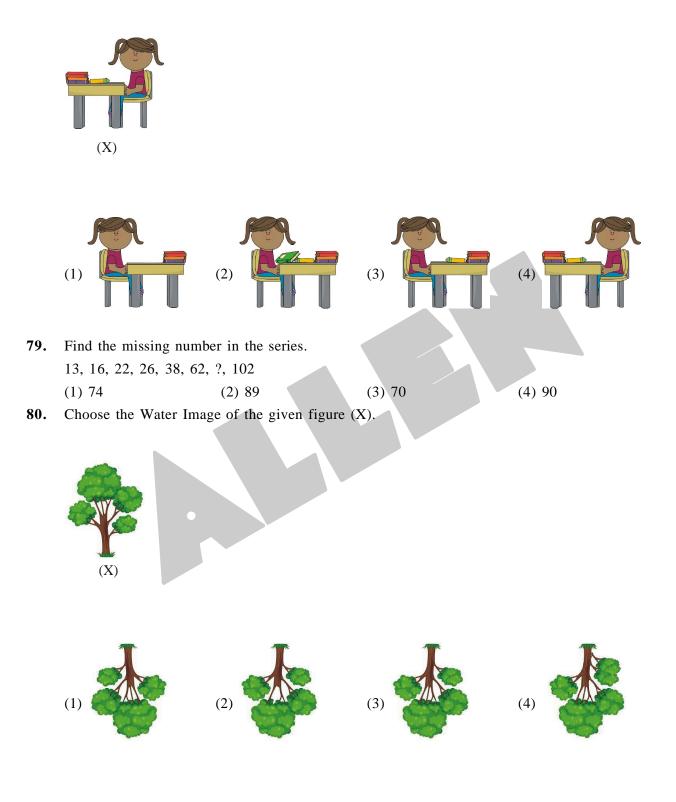

ALLEN'S Talent Encouragement Exam

73. Find the missing character in the given figure.

		6 / 1/	
		8 8 20	
		2 3 ?	
(1) 7	(2) 16	(3) 10	(4) 45

B

74. There are three circles A, B and C in the figure, which represents the number of students who got distinction in Physics, Chemistry and Mathematics respectively. The total number of candidates passed is 500. Observe the diagram given below and find out the total percentage of students who got distinction in all the three subjects ?



(1) B is the mother of S.

- (2) M is the husband of B.
- (3) S is the daughter of B. (4) T is the wife of S.

78. Choose the Mirror Image of the given figure (X).

TALLENTEX ALLEN'S Talent Encouragement Exam

ANSWER KEY															
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	2	2	3	1	1	4	2	2	3	2	2	4	3	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	1	2	4	3	4	3	2	4	3	2	1	2	4	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	2	4	2	4	2	3	3	4	3	1	3	4	3	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	3	4	1	1	1	2	2	3	2	1	1	2	2	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	3	4	3	4	3	2	3	4	4	1	3	1	1	4	3
Que.	76	77	78	79	80				_						
Ans.	1	3	3	1	3										